Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Enhanced protein repair and recycling are not correlated with longevity in 15 vertebrate endotherm species.

Identifieur interne : 000950 ( Main/Exploration ); précédent : 000949; suivant : 000951

Enhanced protein repair and recycling are not correlated with longevity in 15 vertebrate endotherm species.

Auteurs : Kurtis D. Salway [Canada] ; Melissa M. Page ; Paul A. Faure ; Gary Burness ; Jeffrey A. Stuart

Source :

RBID : pubmed:20567926

Descripteurs français

English descriptors

Abstract

Previous studies have shown that longevity is associated with enhanced cellular stress resistance. This observation supports the disposable soma theory of aging, which suggests that the investment made in cellular maintenance will be proportional to selective pressures to extend lifespan. Maintenance of protein homeostasis is a critical component of cellular maintenance and stress resistance. To test the hypothesis that enhanced protein repair and recycling activities underlie longevity, we measured the activities of the 20S/26S proteasome and two protein repair enzymes in liver, heart and brain tissues of 15 different mammalian and avian species with maximum lifespans (MLSP) ranging from 3 to 30 years. The data set included Snell dwarf mice, in which lifespan is increased by ∼50% compared to their normal littermates. None of these activities in any of the three tissues correlated positively with MLSP. In liver, 20S/26S proteasome and thioredoxin reductase (TrxR) activities correlated negatively with body mass. In brain tissue, TrxR was also negatively correlated with body mass. Glutaredoxin (Grx) activity in brain was negatively correlated with MLSP and this correlation remained after residual analysis to remove the effects of body mass, but was lost when the data were analysed using Felsenstein's independent contrasts. Snell dwarf mice had marginally lower 20S proteasome, TrxR and Grx activities than normal controls in brain, but not heart tissue. Thus, increased longevity is not associated with increased protein repair or proteasomal degradation capacities in vertebrate endotherms.

DOI: 10.1007/s11357-010-9157-5
PubMed: 20567926
PubMed Central: PMC3063641


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Enhanced protein repair and recycling are not correlated with longevity in 15 vertebrate endotherm species.</title>
<author>
<name sortKey="Salway, Kurtis D" sort="Salway, Kurtis D" uniqKey="Salway K" first="Kurtis D" last="Salway">Kurtis D. Salway</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, Brock University, 500 Glenridge Ave., St. Catharines, Ontario, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biological Sciences, Brock University, 500 Glenridge Ave., St. Catharines, Ontario</wicri:regionArea>
<wicri:noRegion>Ontario</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Page, Melissa M" sort="Page, Melissa M" uniqKey="Page M" first="Melissa M" last="Page">Melissa M. Page</name>
</author>
<author>
<name sortKey="Faure, Paul A" sort="Faure, Paul A" uniqKey="Faure P" first="Paul A" last="Faure">Paul A. Faure</name>
</author>
<author>
<name sortKey="Burness, Gary" sort="Burness, Gary" uniqKey="Burness G" first="Gary" last="Burness">Gary Burness</name>
</author>
<author>
<name sortKey="Stuart, Jeffrey A" sort="Stuart, Jeffrey A" uniqKey="Stuart J" first="Jeffrey A" last="Stuart">Jeffrey A. Stuart</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:20567926</idno>
<idno type="pmid">20567926</idno>
<idno type="doi">10.1007/s11357-010-9157-5</idno>
<idno type="pmc">PMC3063641</idno>
<idno type="wicri:Area/Main/Corpus">000997</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000997</idno>
<idno type="wicri:Area/Main/Curation">000997</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000997</idno>
<idno type="wicri:Area/Main/Exploration">000997</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Enhanced protein repair and recycling are not correlated with longevity in 15 vertebrate endotherm species.</title>
<author>
<name sortKey="Salway, Kurtis D" sort="Salway, Kurtis D" uniqKey="Salway K" first="Kurtis D" last="Salway">Kurtis D. Salway</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, Brock University, 500 Glenridge Ave., St. Catharines, Ontario, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biological Sciences, Brock University, 500 Glenridge Ave., St. Catharines, Ontario</wicri:regionArea>
<wicri:noRegion>Ontario</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Page, Melissa M" sort="Page, Melissa M" uniqKey="Page M" first="Melissa M" last="Page">Melissa M. Page</name>
</author>
<author>
<name sortKey="Faure, Paul A" sort="Faure, Paul A" uniqKey="Faure P" first="Paul A" last="Faure">Paul A. Faure</name>
</author>
<author>
<name sortKey="Burness, Gary" sort="Burness, Gary" uniqKey="Burness G" first="Gary" last="Burness">Gary Burness</name>
</author>
<author>
<name sortKey="Stuart, Jeffrey A" sort="Stuart, Jeffrey A" uniqKey="Stuart J" first="Jeffrey A" last="Stuart">Jeffrey A. Stuart</name>
</author>
</analytic>
<series>
<title level="j">Age (Dordrecht, Netherlands)</title>
<idno type="eISSN">1574-4647</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aging (metabolism)</term>
<term>Animals (MeSH)</term>
<term>Homeostasis (MeSH)</term>
<term>Longevity (MeSH)</term>
<term>Proteasome Endopeptidase Complex (metabolism)</term>
<term>Proteins (metabolism)</term>
<term>Vertebrates (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Homéostasie (MeSH)</term>
<term>Longévité (MeSH)</term>
<term>Proteasome endopeptidase complex (métabolisme)</term>
<term>Protéines (métabolisme)</term>
<term>Vertébrés (MeSH)</term>
<term>Vieillissement (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Proteasome Endopeptidase Complex</term>
<term>Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Aging</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Proteasome endopeptidase complex</term>
<term>Protéines</term>
<term>Vieillissement</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Homeostasis</term>
<term>Longevity</term>
<term>Vertebrates</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Homéostasie</term>
<term>Longévité</term>
<term>Vertébrés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Previous studies have shown that longevity is associated with enhanced cellular stress resistance. This observation supports the disposable soma theory of aging, which suggests that the investment made in cellular maintenance will be proportional to selective pressures to extend lifespan. Maintenance of protein homeostasis is a critical component of cellular maintenance and stress resistance. To test the hypothesis that enhanced protein repair and recycling activities underlie longevity, we measured the activities of the 20S/26S proteasome and two protein repair enzymes in liver, heart and brain tissues of 15 different mammalian and avian species with maximum lifespans (MLSP) ranging from 3 to 30 years. The data set included Snell dwarf mice, in which lifespan is increased by ∼50% compared to their normal littermates. None of these activities in any of the three tissues correlated positively with MLSP. In liver, 20S/26S proteasome and thioredoxin reductase (TrxR) activities correlated negatively with body mass. In brain tissue, TrxR was also negatively correlated with body mass. Glutaredoxin (Grx) activity in brain was negatively correlated with MLSP and this correlation remained after residual analysis to remove the effects of body mass, but was lost when the data were analysed using Felsenstein's independent contrasts. Snell dwarf mice had marginally lower 20S proteasome, TrxR and Grx activities than normal controls in brain, but not heart tissue. Thus, increased longevity is not associated with increased protein repair or proteasomal degradation capacities in vertebrate endotherms.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20567926</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>06</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1574-4647</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>33</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2011</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Age (Dordrecht, Netherlands)</Title>
<ISOAbbreviation>Age (Dordr)</ISOAbbreviation>
</Journal>
<ArticleTitle>Enhanced protein repair and recycling are not correlated with longevity in 15 vertebrate endotherm species.</ArticleTitle>
<Pagination>
<MedlinePgn>33-47</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s11357-010-9157-5</ELocationID>
<Abstract>
<AbstractText>Previous studies have shown that longevity is associated with enhanced cellular stress resistance. This observation supports the disposable soma theory of aging, which suggests that the investment made in cellular maintenance will be proportional to selective pressures to extend lifespan. Maintenance of protein homeostasis is a critical component of cellular maintenance and stress resistance. To test the hypothesis that enhanced protein repair and recycling activities underlie longevity, we measured the activities of the 20S/26S proteasome and two protein repair enzymes in liver, heart and brain tissues of 15 different mammalian and avian species with maximum lifespans (MLSP) ranging from 3 to 30 years. The data set included Snell dwarf mice, in which lifespan is increased by ∼50% compared to their normal littermates. None of these activities in any of the three tissues correlated positively with MLSP. In liver, 20S/26S proteasome and thioredoxin reductase (TrxR) activities correlated negatively with body mass. In brain tissue, TrxR was also negatively correlated with body mass. Glutaredoxin (Grx) activity in brain was negatively correlated with MLSP and this correlation remained after residual analysis to remove the effects of body mass, but was lost when the data were analysed using Felsenstein's independent contrasts. Snell dwarf mice had marginally lower 20S proteasome, TrxR and Grx activities than normal controls in brain, but not heart tissue. Thus, increased longevity is not associated with increased protein repair or proteasomal degradation capacities in vertebrate endotherms.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Salway</LastName>
<ForeName>Kurtis D</ForeName>
<Initials>KD</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, Brock University, 500 Glenridge Ave., St. Catharines, Ontario, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Page</LastName>
<ForeName>Melissa M</ForeName>
<Initials>MM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Faure</LastName>
<ForeName>Paul A</ForeName>
<Initials>PA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Burness</LastName>
<ForeName>Gary</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Stuart</LastName>
<ForeName>Jeffrey A</ForeName>
<Initials>JA</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>06</Month>
<Day>22</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Age (Dordr)</MedlineTA>
<NlmUniqueID>101250497</NlmUniqueID>
<ISSNLinking>0161-9152</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011506">Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.25.1</RegistryNumber>
<NameOfSubstance UI="D046988">Proteasome Endopeptidase Complex</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000375" MajorTopicYN="N">Aging</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006706" MajorTopicYN="Y">Homeostasis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008136" MajorTopicYN="Y">Longevity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046988" MajorTopicYN="N">Proteasome Endopeptidase Complex</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011506" MajorTopicYN="N">Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014714" MajorTopicYN="N">Vertebrates</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2010</Year>
<Month>03</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2010</Year>
<Month>05</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>6</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>6</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>7</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20567926</ArticleId>
<ArticleId IdType="doi">10.1007/s11357-010-9157-5</ArticleId>
<ArticleId IdType="pmc">PMC3063641</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Methods Enzymol. 1999;300:226-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9919525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Anat. 2000 Nov;197 Pt 4:587-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11197532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochimie. 2001 Mar-Apr;83(3-4):301-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11295490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2008 Sep;25(9):1795-808</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18453548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Age (Dordr). 2008 Sep;30(2-3):111-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19424861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2009 Jun;1790(6):495-526</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19364476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1998;67:425-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9759494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2008 Feb 1;44(3):403-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17976388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biochem Cell Biol. 2004 Dec;36(12):2519-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15325589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Pathol. 2010 Mar;20(2):281-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19725834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mech Ageing Dev. 2010 Apr;131(4):242-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20219522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2000 Feb;14(2):312-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10657987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1994 Apr 12;1226(1):73-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8155742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biochem Cell Biol. 2003 May;35(5):716-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12672463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comp Biochem Physiol A Mol Integr Physiol. 2009 Jan;152(1):115-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18948223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Invest Ophthalmol Vis Sci. 2008 Oct;49(10):4497-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18586881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2006 Jan 1;40(1):156-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16337889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Jun 27;320(5884):1763-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18583609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Aging Sci. 2009 Mar;2(1):12-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20021396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 1997 Apr 29;352(1352):519-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9163825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3059-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19223593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mech Ageing Dev. 2009 Jun;130(6):393-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19428459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Repair (Amst). 2009 Apr 5;8(4):444-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19272841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1998 Nov 1;335 ( Pt 3):637-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9794805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2006 Jan 23;580(2):484-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16387300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gerontol A Biol Sci Med Sci. 2001 Nov;56(11):B468-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11682567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Rev Camb Philos Soc. 2007 Aug;82(3):375-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17624960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 May 4;292(5518):929-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11340206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Endocrinol Metab. 2005 Jul;289(1):E23-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15701676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Jan 9;421(6919):182-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12483226</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005 Jan 1;33(Database issue):D537-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15608256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2009 Dec;21(6):878-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19850458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2002 Apr;19(4):554-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11919297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ageing Res Rev. 2011 Apr;10(2):181-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20109583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Cell Physiol. 2007 Feb;292(2):C670-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17020935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Aspects Med. 2009 Aug;30(4):191-296</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19371762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2006 Feb;5(1):89-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16441847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2009 Oct;1790(10):1005-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19524016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 May 25;276(21):17920-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11279020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Age (Dordr). 2010 Jun;32(2):255-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20431992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2008 Jan;7(1):32-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18028257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carcinogenesis. 1999 Sep;20(9):1761-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10469622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Apr 3;104(14):5947-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17392428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2005 Aug;4(4):167-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16026331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2008 Jun 1;22(11):1427-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18519635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 1999 Mar;26(5-6):495-500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10218637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2009 Apr 15;46(8):1042-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19439239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gerontol A Biol Sci Med Sci. 2009 Aug;64(8):819-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19414510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 May 1;273(18):10857-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9556559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2009 Jul;23(7):2317-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19244163</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Burness, Gary" sort="Burness, Gary" uniqKey="Burness G" first="Gary" last="Burness">Gary Burness</name>
<name sortKey="Faure, Paul A" sort="Faure, Paul A" uniqKey="Faure P" first="Paul A" last="Faure">Paul A. Faure</name>
<name sortKey="Page, Melissa M" sort="Page, Melissa M" uniqKey="Page M" first="Melissa M" last="Page">Melissa M. Page</name>
<name sortKey="Stuart, Jeffrey A" sort="Stuart, Jeffrey A" uniqKey="Stuart J" first="Jeffrey A" last="Stuart">Jeffrey A. Stuart</name>
</noCountry>
<country name="Canada">
<noRegion>
<name sortKey="Salway, Kurtis D" sort="Salway, Kurtis D" uniqKey="Salway K" first="Kurtis D" last="Salway">Kurtis D. Salway</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000950 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000950 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20567926
   |texte=   Enhanced protein repair and recycling are not correlated with longevity in 15 vertebrate endotherm species.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20567926" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020